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In this paper we give a necessary and sufficient condition for the stability of
the finite-difference time-domain method (FDTD method). This is an explicit time
stepping method that is used for solving transient electromagnetic field problems.
A necessary (but not a sufficient) condition for its stability is usually obtained by
requiring that discrete Fourier modes, defined on the FDTD grid, remain bounded as
time stepping proceeds. Here we follow a different approach. We rewrite the basic
FDTD equations in terms of an iteration matrix and study the eigenvalue problem
for this matrix. From the analysis a necessary and sufficient condition for stability
of the FDTD method follows. Moreover, we show that for a particular time step the
2-norm of the FDTD iteration matrix is equal to the golden rati@ 2000 Academic Press
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1. INTRODUCTION

The finite-difference time-domain method (FDTD method) is widely used for sol
ing transient electromagnetic field problems. As an illustration, at the URL addre
http:  //www.fdtd.org/  a list of over 3400 publications about the FDTD method anc
its applications can be found. The method is an explicit time stepping method and is be
on the classical Yee scheme. A necessary (but not a sufficient) condition for its stabilit
usually obtained by requiring that the amplitude of a discrete Fourier mode remains bour
as time stepping proceeds (see, for example, Taflove [3] and Kunz and Luebbers [2]).

In this paper we follow a different approach. First, we rewrite the basic FDTD equatio
in a form which shows that one step of the FDTD method can be interpreted as a forwe
backward substitution. Second, we rewrite this form in terms of an iteration matrix. T
stability analysis of the FDTD method then amounts to an eigenvalue analysis of t
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iteration matrix. From the analysis a necessary and sufficient condition for stability follow
Moreover, we show that the 2-norm of the FDTD iteration matrix is equal to the gold
ratio for a suitably chosen time step.

To specify position, we employ the vectorwith Cartesian coordinates, X,, andxs.
Further,d,, 32, andds denote differentiation with respect 1q, x,, andxs, respectively,
while d; denotes differentiation with respect to the time coordinate

The paper is organized as follows. In Section 2, we introduce Maxwell’s equations. The
equations are normalized and are written in a particular matrix operator form. This fo
serves as a basis for our analysis. In Section 3, we briefly review the basic FDTD equati
Everything in this section is well known, only the notation is different. In Section 4, w
present our stability analysis, and in Section 5, we show how to apply the stability conditi
in practice. Finally, in Section 6, we illustrate our results for a simple one-dimensior
configuration.

2. MAXWELLS EQUATIONS

Maxwell’s equations describing the behavior of the electromagnetic field in an inhorr
geneous, isotropic, and lossless medium are given by

—V x H + ¢dE = —J8, 1)
V x E+ pdH = —K®. )

In these equationg; is the electric field strength (V/mM is the magnetic field strength
(A/m), ¢ is the permittivity (F/m)u is the permeability (H/m)J€ is the external electric-
current density (A/rf), andK® is the external magnetic-current density (\}jnBefore we
review the basic FDTD equations, we first normalize Maxwell’'s equations and discuss sc
of the structure of these equations.

Given a problem-related reference lengthwe write

X =L and t' =clL7, (3)

whereg is the electromagnetic wave speed in vacuum. Further, we introduce the normali
guantities

E'(X,t) =E(LX, g Lt), H'(X,t) = ZoH (LX, ¢ Lt), (4)
and
T, 1) = LZd®(LX, g 'Lt'), K¥(X,t) = LK®(LxX, ¢z Lt'), (5)
in which Zg = (10/£0)¥?. These quantities satisfy the equations

V' x H + g E = -J°, (6)
V' x E' + popyH = —K®, (7)
where V' is the nabla operator with respect to the primed spatial coordinatesj.and

denotes differentiation with respectttoFurther.e, = ¢/¢0 andu, = 1 /uo are the relative
permittivity and permeability, respectively. In what follows, we drop the primes.
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Written out in full, Egs. (6) and (7) can be arranged in the form
(S§+Mo)F = Q, (8)

where F = F(x, t) is the field vector consisting of the components of the electric fiel
strengthE and the magnetic field strengthas

F = [E1, Ez, Ez, Hy, Ha, Ha]", 9)

andQ = Q(x, t) is the source vector composed of the components of the external elect
current sourcd® and the components of the external magnetic-current sd(?@s

Q=—[38 35 38 KS, KS, K™ (10)
The time-independent medium matri is given by
M = diad(ey, &r, &r, Ur, fhry Lr)- (11)
This matrix is positive definite since the relative permittivity and permeability are alwa
positive.

The spatial derivatives are contained in the spatial differentiation operator iSajen
by

0 0 0 0 93 -0,
0 0 0 —-93 O 01
0 0 0 ) —a 0
S= 2 (12)
0 -9 9 O 0 0
33 0 -9, O 0 0
—d2 01 0 0 0 0
We also introduce the diagonal matrid&sands™ as
8E =diag(1,1,1,0,0,0), (13)
and
8" = diag0, 0,0, 1, 1, 1). (14)
It is easily verified that the relations
s1S = SsF, (15)
and
sES = St (16)

hold. These equations show that when maftigperates on a vector related to the electric
field strength, a vector related to the magnetic field strength results and vice versa.



252 ROB F. REMIS

3. BASIC FDTD EQUATIONS

In this section we briefly review the basic FDTD equations. Much more about the finit
difference discretization of Maxwell's equations can be found in the books by Taflove [3,
and the book by Kunz and Luebbers [2].

We introduce auniform grigiy.i, X2.j, Xak} ={( — DA, (j = DA, (k—-DA;i, j,k=
1,2,..., Ng},whereA = 1/(Ns — 1) is the grid size, and approximate the electromagneti
field quantities in a staggered manner. For example, the finite-difference approximatior
the first component of the first Maxwell equation is

Ha (Xwi+1/2, X2 j+1/2: Xaks 1) — Ha(Xwi 172, X2j—1/2, Xaik t)

A
HZ(Xl;i+1/2, X2, s X3ik+1/25 t) — Hz(Xl;i+1/z, X2, X3:k—1/2 t)
+ an
A
+ & (Xui+1/2 X2 Xaik) 0 Ex (Xui+a/2, X2, Xao t) = — I (Xui1/2, X2 Xak b)),

and similar expressions hold for the other equations. At the boundary of the computatic
domain we set the tangential electric field strength components to zero. For example, ir
planex, = X».1, the component&; and E3 are set to zero. The resulting set of equation:s
can be written compactly as

(D + Ma)F () = Q). (18)

This equation is similar in form to Eq. (8). The matriddsand M are both square and of
orderN; matrix D represents the spatial differentiation operator marand for a uniform
grid itis skew-symmetric, while matrikl represents the medium matii and is diagonal
and positive definite. The counterpartsséfands™ are denoted by the same symbols. It is
not difficult to verify that Egs. (15) and (16) have an analog after discretization. Note tt
in two dimensionsN is proportional to 312, while in three dimensionsyl is proportional
to 6NS.

Multiply Eq. (18) on the left bysE. With the help of the discrete counterpart of Eq. (16)
we obtain

DS"F(t) + MasEF(t) = sEQ(1). (19)
Introduce the time instancés= nAt, whereAt > 0 is the time step, andis an integer.

Integrating Eqg. (19) in time, with = t, andt = t,,; as integration limits, leads to

thia
D [ F () dr + MIBF (i) = 85F ()] = Inl5°Q) (20)
=ty

where

tn+1

1n(55Q) = / $EQ(r) dr. (21)

=ty
Using the midpoint rule to approximate the integral on the left-hand side of Eq. (20) rest
in

AtD 87F (thy1/2) + M[85F (thy1) — 85F (t)] = 1n{85Q}. (22)
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If we solve this equation for the electric field strength at the time instant, . ;, we obtain
the first FDTD equation (see Taflove [3])

8EF (thy1) = 8FF (th) — AtM D 6"F (th11/2) + MM, {65Q). (23)

Notice that computingvl 1 is trivial since matrixM is diagonal. Moreover, only the per-
mittivity values need to be inverted sinéé~! appears in a product witsf in the above
equation. (Recall thavl 1Ds" = M~16ED.)

Now multiply Eq. (18) on the left by". Using the discrete counterpart of Eq. (15) and
integrating the resulting expression in time with= t,_1/» andt = tn;1/> as integration
limits give

tn+1/2
D/ SEF (r) dt + M[8MF (thsr2) — 8"F (th—1/2)| = ln_12{8" Q}. (24)

=th-1/2

Again, we use the midpoint rule to approximate the integral on the left-hand side of Eq. (2
This gives

AtD 85F (tn) + M[8"F (thy1/2) — 8"F (th-1/2)] = In-1/2{6" Q). (25)

Solving this equation for the magnetic field strengtti &t t,,1,»> gives the second time
stepping equation of the FDTD scheme (see Taflove [3])

SMF (thi1/2) = 8"F (th—r2) — AtMTIDSEF (t)) + M n_12{8™ Q). (26)

In this equation only the permeability values need to be inverted.

4. STABILITY ANALYSIS

Instead of solving for the electric and magnetic field components at the latest time inst
we write the basic FDTD equations in a different form. To this end we introduce the fie

V(:‘,‘CtOI’IE as
F(t,) S () (27)
"M (ta) )

and write Eqgs. (22) and (25) in the form

M AtD) = M 0)-= In{65Q}
( o M ) F(th41) = (_AtD M ) F(th) + (In_l/z{s“Q} : (28)
Since matrixM is diagonal, we conclude from Eq. (28) that one FDTD step is equivale
to a forward—backward substitution.

To study the stability of the FDTD method, it is sufficient to consider the homogeneo

counterpart of Eq. (28). Introduce the iteration matrix

| + (AtA)? —AtA
G ( + ( ) ’ (29)

—AtA I
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where
A= M"Y2DM2, (30)

and rewrite the homogeneous system as

M1/2 0 - M1/2 0 -
O Ml/z F(tn+1) =G O Ml/z F(tn) (31)

From this equation it follows that
F(tn+m) = GmF(tn)7 (32)

where we have introduced the vector

M1/2 0 N

We now give the following definition of stability of the FDTD method.

DeriNITION 4.1. The FDTD method is stable if for evany> 1 and fixednh there exists
a constanK such that

IF(thtm)ll2 = KIIF(ta)ll2. (34)

The choice for the 2-norm poses no restrictions since all norms are equivalent o
finite-dimensional space. We have taken the 2-norm for convenience and bgEggisea
measure for the stored electromagnetic energy in the computational domain.

Since matrixA is skew-symmetric, it can be diagonalized by a unitary similarity trans
formation; that is, there exists a maté&such that

AX = XA, wherex"X =Xx"H =1, (35)
and A = diag(i¢1,i¢2, ..., i¢n) Withi2= -1 and¢; € IR, j =1,2,..., N. The spec-
tral radius of matrixA is given by po(A) = max; |¢j|. Notice that there are at least two

eigenvalues whose absolute value is equal to the spectral radius of Watrix
With the eigendecomposition of matri&at our disposal, we can write

xXH 0 X 0 | + (AtA)2 —AtA
<o XH>G<O x>=< —AtA | ) (36)

and the matrix on the right-hand side of the above equation can be permuted into the f
diag(B1, By, ..., Bn), where eaclB; is a 2-by-2 matrix given by

B _ <1—(At;,—)2 —iAtg) 37)
P —iatg 1)
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To clarify this last step, consider the matrix

[0%] 0 ﬁl 0
0 0
R= 2 Pa | (38)
B 0 1 0
0 g 0 1

This matrix has the same structure as the matrix on the right-hand side of Eqg. (36). If
interchange rows two and three and subsequently columns two and three, we obtain am
of the desired form. The interchanging of the relevant rows and columns is achieved
multiplying matrix R on the left and on the right by the permutation matrix

(39)

O O O
o = OO
o O+ O
= O O O

Note that matrixP is unitary and that the eigenvaluesPR P are the same as those Rf
As is easily verified, matri¥® R Pis given by

a; 1 0 O
PRP= %1 é aoz ﬂg (40)
0 0 B 1
To summarize, there exists a unitary matdgxuch that
UHGU = B, (41)
where matrixB is given by
B = diag(By, By, ..., Bn), (42)

and the 2-by-2 matriceB; are given by Eq. (37). From this result it immediately follows
that the N eigenvalues of the FDTD iteration mati& are given by

1 1
A=1- 5(Atgj)zi 5Atg,-\/(mgj)z —4 forj=12,...,N. (43)

We are now in a position to prove our main result.

THEOREM4.1. A necessary condition for stability of the FDTD method is

At < ﬁ’ (44)

while a necessary and sufficient condition is

At . 45
TS (49)
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Proof. We prove the necessary condition first. If the FDTD scheme is stable we mt
havep(G) < 1. From Eq. (43) it then follow that

At < A (46)

The proof of the sufficiency condition is more involved. If the condition of Eq. (45) i
satisfied, all submatriceB; can be diagonalized. In other words, there exist nonsingule
matricesV; such that

Bj=V;x;Vj*', forj=12... N, (47)

whereXj is a 2-by-2 diagonal matrix with the eigenvalues of maixon its diagonal.
From Eq. (43) it follows that all eigenvalues of mat(and hence oB) are locatedn
the unit circle in the complex plane if the condition of Eq. (45) is satisfied.

We have

IF(tn+m)ll2 = IG™F(tn) 2 < IG™ll2IFt) Il2, (48)

and stability is proven by showing tha&™||, remains bounded for amm > 1.
Now it is easily verified that

IG™l2 = 1B™ = _max B, (49)

Say that it is thelth submatrix for which the maximum is attained. Then,
1G™l2 = || BY|l, = IVallol S5,/ V5 ], = I1Vallz[ V5], = K. (50)
Equality in Eq. (46) is not a sufficient condition for stability. To show this, we construc
a vectorx for which ||G™x||, becomes unbounded as— oo, if At is chosen such that
Atp(A) = 2. We have
IG™x]I3 = IlUB™U x5 = BMU " x|3. (51)

Now choosex asx = U p, and partition vectopasp = [p], p;, ..., py]", where thep;
are 2-by-1 vectors. We then have

N
1™z =" |8 f% (52)
j=1

SinceAtp(A) = 2, there are at least two submatrices equal to

~ 3 —2i
B = (—Zi N > (53)

Matrix B cannot be diagonalized. Instead, we compute its Schur decomposition

B=WTW, (54)
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where

W:%«/ﬁ(il '1) and T=<_01 __41i>. (55)

Notice that matriXW is unitary and that the eigenvalues®fare located on the diagonal
of matrix T. From the expression for matrik in Eq. (55) it follows that

(56)

™ = (—)™ (é 4";')

Let the Rth submatrix be equal t8. Choose vectop such thatp; = [0 0]" for j # R,
and pr = W[0 1]. With x = U p and this particular vectgp, we obtain
2
IG™xI5 = || BR Pr|5 = IWT™W" pgli3
0 2
_ m
-]

=16m’+1— co asm— oo, (57)
showing that there exits a vectifor which the scheme becomes unstablm.

2

The spectral radius of matriA does not change if the mesh size is fixed and stabl
results are obtained on any given time interval as long as Eq. (45) is satisfied. However
spectral radius increases for a finer mesh. Equation (45) tells us that a smaller time st
then necessary to obtain stable results.

As an interesting by-product, we show the 2-norm of the FDTD iteration matrix. Dire
computation yields

Gl \/2+52(32+«/4+ s)
2= ’

> (58)

wheres = Atp(A). This results shows that the 2-norm of the FDTD matrix is greater the
one for any (positive) value &f Fors = 1 (At equals half the upper limit of Eq. (45)) we
have

1+ /5

IGl2 = ——. (59)

the golden ratio.

5. THE STABILITY CONDITION IN PRACTICE

The problem with the condition of Eq. (45) is that the spectral radius of mAtigxisually
not available. In contrast, the infinity norm of this matrix is easily computed. Approximatir
the spectral radius by the infinity norm leads to the practical stability condition

At < ———. 60
Il Alloo (60)

If the above inequality is satisfied, then the stability condition of Eq. (45) is automatica
satisfied since (A) < || Alloo-
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As an illustration, consider a homogeneous medium characterized by a constant rele
permittivity e, and a constant relative permeability. Using the definition of matridA (see
Eq. (30)), we obtain

N
Al = max i j
|Alloe =, _max ]Z_; &

B ﬁ for one dimensional problems 1)
ﬁ, for two- and three-dimensional problems.
Substituting this result in Eq. (60) then leads to the stability condition
At < - e A, (62)

where f = 1 for one-dimensional problems, arfid= 1/2 for two- and three-dimensional
problems. Rewriting the above equation in terms of the unnormalized quantities gives

A
At< o, (63)

wherec is the electromagnetic wave speed.

6. A ONE-DIMENSIONAL CONFIGURATION

Consider the electromagnetic field in a configuration that is invariant irxtland x,
directions and let the normalized field quantities satisfy the equations

d3Hz + 60 E; = =37 (64)
and
93E1 + purdHy = —K§, (65)
with 0 < x3 < 1. The system is initially at rest. The boundary conditions are given by
E1(0,t) = E;(1,t) =0, fort > 0. (66)
Define the grid pointsz; = (i — DA fori =1,2,..., Nswith A =1/(Ns— 1), and

approximate the electromagnetic field quantities on a staggered grid (see Fig. 1). We 1
obtain the equations

Ha (Xgi+12. 1) — Ha(Xai—1/2, t)
A

+ &r(X3) % E1(xzi, 1) = = I (X3, 1),  (67)

fori =2,3,...,Ns— 1, and

E1(Xzit1, 1) — E1(Xz;i, 1)
A

+ ir (Xaiv1/2) 0 Ha (Xzi 1172, t) = —K5(Xais1/2.t), (68)
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perfectly conducting material perfectly conducting material
—
A
z3 =0 r3 =1

FIG. 1. A one-dimensional configuration. The squares indicate the location of the electric field stren
component;,, the circles indicate the location of the magnetic field strength compadthent

fori =1,2,..., Ns— 1. The boundary conditions become
Ei(Xa1,t) = E1(Xgn, t) =0, fort > 0. (69)
Equations (67)—(69) can be written more compactly as
(D + May)F(t) = Q(t), (70)
in which the field vectoF = F(t) is given by

F(t) = [Hz2(Xa32. 1), E1(Xa2, 1), Ha(Xa5/2, 1), ..., E1(Xane—1. 1), Ha(Xane-1/2, t)]T,
(71)
and the source vector has a similar partitioning. The medium migkri of the form

M= diag(ﬂr(xs;s/z), &r(Xs;2), Mr(Xs;s/z), cees 8r(X3; Ns—l), Mr(Xs; NS—1/2))’ (72)

and matrixD is given by

1 1
D = tridiag( ——, 0, — . 73
o(-3:05) 73)
To simplify the analysis, we consider a homogeneous medium characterized by a con:
relative permittivitys; and a constant relative permeability. As is easily verified, matrix
A, as defined in Eq. (30), is then given by

A = tridiag| — 1 , 0, ! . (74)
E A \/Erl/LrA

For this particular example the spectral radius of ma#is known. We have

2 TA
(A) = cos(). 75
p e A 2 (79)
Substitution of this result in Eq. (45) leads to the stability condition
J A
At < Y2 (76)

cog(73")



260 ROB F. REMIS

If we rewrite this inequality in terms of the unnormalized quantities, we obtain the boun

At 7A (77)
< AN
ccos(%f)

In Figs. 2a—2c we have plotted the eigenvalues of the FDTD iteration matrix for a fix
Ns and three different values oft, namely, At =5/(2p(A)), At =2/p(A), and

az2 ! T ! ! ' ! !

Otk R ok 3 e e e e e Ko

|
N

o i ; : } : : ;
4 3 2 A 0 1 2 3 4

FIG. 2. (a) Eigenvalues of the FDTD iteration mat&for At = 5/(2p(A)). (b) Eigenvalues of the FDTD
iteration matrixG for At = 2/p(A). (c) Eigenvalues of the FDTD iteration mat@&for At = 3/(2p(A)).
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At = 3/(2p(A)). Notice that the eigenvalues approach one and remain on the unit
cle asAt becomes smaller. This can also be seen from Eq. (43), of course.

7. CONCLUSIONS

In this paper we have presented a necessary and sufficient condition for stability of
FDTD method. Furthermore, we have shown that for a particular time step the 2-nc
of the FDTD iteration matrix is equal to the golden ratio. In our analysis we consider
inhomogeneous, isotropic, and lossless media. Future work will focus on the incorpora
of lossy media. Finally, we mention that the stability analysis presented in this paper
also be used to study the stability of FDTD schemes for acoustic and elastodynamic w
fields, since it can be shown that the governing equations for these types of waves ca
written in the form of Eq. (8) as well (see De Hoop and De Hoop [1]).
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