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In this paper we give a necessary and sufficient condition for the stability of
the finite-difference time-domain method (FDTD method). This is an explicit time
stepping method that is used for solving transient electromagnetic field problems.
A necessary (but not a sufficient) condition for its stability is usually obtained by
requiring that discrete Fourier modes, defined on the FDTD grid, remain bounded as
time stepping proceeds. Here we follow a different approach. We rewrite the basic
FDTD equations in terms of an iteration matrix and study the eigenvalue problem
for this matrix. From the analysis a necessary and sufficient condition for stability
of the FDTD method follows. Moreover, we show that for a particular time step the
2-norm of the FDTD iteration matrix is equal to the golden ratio.c© 2000 Academic Press
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1. INTRODUCTION

The finite-difference time-domain method (FDTD method) is widely used for solv-
ing transient electromagnetic field problems. As an illustration, at the URL address
http: //www.fdtd.org/ a list of over 3400 publications about the FDTD method and
its applications can be found. The method is an explicit time stepping method and is based
on the classical Yee scheme. A necessary (but not a sufficient) condition for its stability is
usually obtained by requiring that the amplitude of a discrete Fourier mode remains bounded
as time stepping proceeds (see, for example, Taflove [3] and Kunz and Luebbers [2]).

In this paper we follow a different approach. First, we rewrite the basic FDTD equations
in a form which shows that one step of the FDTD method can be interpreted as a forward–
backward substitution. Second, we rewrite this form in terms of an iteration matrix. The
stability analysis of the FDTD method then amounts to an eigenvalue analysis of this
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iteration matrix. From the analysis a necessary and sufficient condition for stability follows.
Moreover, we show that the 2-norm of the FDTD iteration matrix is equal to the golden
ratio for a suitably chosen time step.

To specify position, we employ the vectorx with Cartesian coordinatesx1, x2, andx3.
Further,∂1, ∂2, and∂3 denote differentiation with respect tox1, x2, andx3, respectively,
while ∂t denotes differentiation with respect to the time coordinatet .

The paper is organized as follows. In Section 2, we introduce Maxwell’s equations. These
equations are normalized and are written in a particular matrix operator form. This form
serves as a basis for our analysis. In Section 3, we briefly review the basic FDTD equations.
Everything in this section is well known, only the notation is different. In Section 4, we
present our stability analysis, and in Section 5, we show how to apply the stability condition
in practice. Finally, in Section 6, we illustrate our results for a simple one-dimensional
configuration.

2. MAXWELL’S EQUATIONS

Maxwell’s equations describing the behavior of the electromagnetic field in an inhomo-
geneous, isotropic, and lossless medium are given by

−∇× H + ε∂tE = −Je, (1)

∇× E+ µ∂tH = −Ke. (2)

In these equations,E is the electric field strength (V/m),H is the magnetic field strength
(A/m), ε is the permittivity (F/m),µ is the permeability (H/m),Je is the external electric-
current density (A/m2), andKe is the external magnetic-current density (V/m2). Before we
review the basic FDTD equations, we first normalize Maxwell’s equations and discuss some
of the structure of these equations.

Given a problem-related reference lengthL, we write

x′ = L−1x and t ′ = c0L−1t, (3)

wherec0 is the electromagnetic wave speed in vacuum. Further, we introduce the normalized
quantities

E′(x′, t ′) = E
(
Lx′, c−1

0 Lt ′
)
, H ′(x′, t ′) = Z0H

(
Lx′, c−1

0 Lt ′
)
, (4)

and

Je′(x′, t ′) = L Z0Je
(
Lx′, c−1

0 Lt ′
)
, Ke′(x′, t ′) = LKe

(
Lx′, c−1

0 Lt ′
)
, (5)

in which Z0 = (µ0/ε0)
1/2. These quantities satisfy the equations

−∇′ × H ′ + εr∂t ′E′ = −Je′, (6)

∇′ × E′ + µr∂t ′H ′ = −Ke′, (7)

where∇′ is the nabla operator with respect to the primed spatial coordinates, and∂t ′

denotes differentiation with respect tot ′. Further,εr = ε/ε0 andµr = µ/µ0 are the relative
permittivity and permeability, respectively. In what follows, we drop the primes.
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Written out in full, Eqs. (6) and (7) can be arranged in the form

(S +M∂t )F = Q, (8)

whereF = F(x, t) is the field vector consisting of the components of the electric field
strengthE and the magnetic field strengthH as

F = [E1, E2, E3, H1, H2, H3]T , (9)

andQ = Q(x, t) is the source vector composed of the components of the external electric-
current sourceJe and the components of the external magnetic-current sourceK e as

Q = −[Je
1 , Je

2 , Je
3 , K e

1, K e
2, K e

3

]T
. (10)

The time-independent medium matrixM is given by

M = diag(εr, εr, εr, µr, µr, µr). (11)

This matrix is positive definite since the relative permittivity and permeability are always
positive.

The spatial derivatives are contained in the spatial differentiation operator matrixS given
by

S =



0 0 0 0 ∂3 −∂2

0 0 0 −∂3 0 ∂1

0 0 0 ∂2 −∂1 0

0 −∂3 ∂2 0 0 0

∂3 0 −∂1 0 0 0

−∂2 ∂1 0 0 0 0


. (12)

We also introduce the diagonal matricesδE andδH as

δE = diag(1, 1, 1, 0, 0, 0), (13)

and

δH = diag(0, 0, 0, 1, 1, 1). (14)

It is easily verified that the relations

δHS = SδE, (15)

and

δES = SδH (16)

hold. These equations show that when matrixS operates on a vector related to the electric
field strength, a vector related to the magnetic field strength results and vice versa.
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3. BASIC FDTD EQUATIONS

In this section we briefly review the basic FDTD equations. Much more about the finite-
difference discretization of Maxwell’s equations can be found in the books by Taflove [3, 4]
and the book by Kunz and Luebbers [2].

We introduce a uniform grid{x1;i , x2; j , x3;k}={(i − 1)1, ( j − 1)1, (k− 1)1; i, j, k =
1, 2, . . . , Ns}, where1 = 1/(Ns− 1) is the grid size, and approximate the electromagnetic
field quantities in a staggered manner. For example, the finite-difference approximation of
the first component of the first Maxwell equation is

−H3
(
x1;i+1/2, x2; j+1/2, x3;k, t

)− H3
(
x1;i+1/2, x2; j−1/2, x3;k, t

)
1

+ H2
(
x1;i+1/2, x2; j , x3;k+1/2, t

)− H2
(
x1;i+1/2, x2; j , x3;k−1/2, t

)
1

(17)

+ εr
(
x1;i+1/2, x2; j , x3;k

)
∂t E1

(
x1;i+1/2, x2; j , x3;k, t

) = −Je
1

(
x1;i+1/2, x2; j , x3;k, t

)
,

and similar expressions hold for the other equations. At the boundary of the computational
domain we set the tangential electric field strength components to zero. For example, in the
planex2 = x2;1, the componentsE1 andE3 are set to zero. The resulting set of equations
can be written compactly as

(D + M∂t )F(t) = Q(t). (18)

This equation is similar in form to Eq. (8). The matricesD andM are both square and of
orderN; matrix D represents the spatial differentiation operator matrixS and for a uniform
grid it is skew-symmetric, while matrixM represents the medium matrixM and is diagonal
and positive definite. The counterparts ofδE andδH are denoted by the same symbols. It is
not difficult to verify that Eqs. (15) and (16) have an analog after discretization. Note that
in two dimensions,N is proportional to 3N2

s , while in three dimensions,N is proportional
to 6N3

s .
Multiply Eq. (18) on the left byδE. With the help of the discrete counterpart of Eq. (16)

we obtain

DδH F(t)+ M∂tδ
EF(t) = δEQ(t). (19)

Introduce the time instancestn = n1t , where1t > 0 is the time step, andn is an integer.
Integrating Eq. (19) in time, witht = tn andt = tn+1 as integration limits, leads to

D
∫ tn+1

τ=tn

δH F(τ ) dτ + M [δEF(tn+1)− δEF(tn)] = In{δEQ}, (20)

where

In{δEQ} =
∫ tn+1

τ=tn

δEQ(τ ) dτ. (21)

Using the midpoint rule to approximate the integral on the left-hand side of Eq. (20) results
in

1t D δH F
(
tn+1/2

)+ M [δEF(tn+1)− δEF(tn)] = In{δEQ}. (22)
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If we solve this equation for the electric field strength at the time instantt = tn+1, we obtain
the first FDTD equation (see Taflove [3])

δEF(tn+1) = δEF(tn)−1t M−1D δH F
(
tn+1/2

)+ M−1In{δEQ}. (23)

Notice that computingM−1 is trivial since matrixM is diagonal. Moreover, only the per-
mittivity values need to be inverted sinceM−1 appears in a product withδE in the above
equation. (Recall thatM−1DδH = M−1δED.)

Now multiply Eq. (18) on the left byδH. Using the discrete counterpart of Eq. (15) and
integrating the resulting expression in time witht = tn−1/2 and t = tn+1/2 as integration
limits give

D
∫ tn+1/2

τ=tn−1/2

δEF(τ ) dτ + M
[
δH F

(
tn+1/2

)− δH F
(
tn−1/2

)] = In−1/2{δH Q}. (24)

Again, we use the midpoint rule to approximate the integral on the left-hand side of Eq. (24).
This gives

1t D δEF(tn)+ M
[
δH F

(
tn+1/2

)− δH F
(
tn−1/2

)] = In−1/2{δH Q}. (25)

Solving this equation for the magnetic field strength att = tn+1/2 gives the second time
stepping equation of the FDTD scheme (see Taflove [3])

δH F
(
tn+1/2

) = δH F
(
tn−1/2

)−1t M−1DδEF(tn)+ M−1In−1/2{δH Q}. (26)

In this equation only the permeability values need to be inverted.

4. STABILITY ANALYSIS

Instead of solving for the electric and magnetic field components at the latest time instant,
we write the basic FDTD equations in a different form. To this end we introduce the field
vectorF̃ as

F̃(tn) =
(

δEF(tn)

δH F
(
tn−1/2

)), (27)

and write Eqs. (22) and (25) in the form(
M 1t D
0 M

)
F̃(tn+1) =

(
M 0
−1t D M

)
F̃(tn)+

(
In{δEQ}

In−1/2{δH Q}

)
. (28)

Since matrixM is diagonal, we conclude from Eq. (28) that one FDTD step is equivalent
to a forward–backward substitution.

To study the stability of the FDTD method, it is sufficient to consider the homogeneous
counterpart of Eq. (28). Introduce the iteration matrix

G =
(

I + (1t A)2 −1t A

−1t A I

)
, (29)
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where

A = M−1/2DM−1/2, (30)

and rewrite the homogeneous system as

(
M1/2 0

0 M1/2

)
F̃(tn+1) = G

(
M1/2 0

0 M1/2

)
F̃(tn). (31)

From this equation it follows that

F(tn+m) = GmF(tn), (32)

where we have introduced the vector

F(tn) =
(

M1/2 0

0 M1/2

)
F̃(tn). (33)

We now give the following definition of stability of the FDTD method.

DEFINITION 4.1. The FDTD method is stable if for everym≥ 1 and fixedn there exists
a constantK such that

‖F(tn+m)‖2 ≤ K‖F(tn)‖2. (34)

The choice for the 2-norm poses no restrictions since all norms are equivalent on a
finite-dimensional space. We have taken the 2-norm for convenience and because‖F‖22 is a
measure for the stored electromagnetic energy in the computational domain.

Since matrixA is skew-symmetric, it can be diagonalized by a unitary similarity trans-
formation; that is, there exists a matrixX such that

AX = X3, whereXH X = X XH = I , (35)

and3 = diag(i ζ1, i ζ2, . . . , i ζN) with i 2 = −1 andζ j ∈ IR, j = 1, 2, . . . , N. The spec-
tral radius of matrixA is given byρ(A) = maxj |ζ j |. Notice that there are at least two
eigenvalues whose absolute value is equal to the spectral radius of matrixA.

With the eigendecomposition of matrixA at our disposal, we can write

(
XH 0
0 XH

)
G

(
X 0
0 X

)
=
(

I + (1t3)2 −1t3

−1t3 I

)
, (36)

and the matrix on the right-hand side of the above equation can be permuted into the form
diag(B1, B2, . . . , BN), where eachBj is a 2-by-2 matrix given by

Bj =
(

1− (1tζ j )
2 −i1tζ j

−i1tζ j 1

)
. (37)
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To clarify this last step, consider the matrix

R=


α1 0 β1 0

0 α2 0 β2

β1 0 1 0

0 β2 0 1

 . (38)

This matrix has the same structure as the matrix on the right-hand side of Eq. (36). If we
interchange rows two and three and subsequently columns two and three, we obtain a matrix
of the desired form. The interchanging of the relevant rows and columns is achieved by
multiplying matrix R on the left and on the right by the permutation matrix

P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (39)

Note that matrixP is unitary and that the eigenvalues ofP RPare the same as those ofR.
As is easily verified, matrixP RP is given by

P RP=


α1 β1 0 0
β1 1 0 0
0 0 α2 β2

0 0 β2 1

 . (40)

To summarize, there exists a unitary matrixU such that

U H GU = B, (41)

where matrixB is given by

B = diag(B1, B2, . . . , BN), (42)

and the 2-by-2 matricesBj are given by Eq. (37). From this result it immediately follows
that the 2N eigenvalues of the FDTD iteration matrixG are given by

λ±j = 1− 1

2
(1tζ j )

2± 1

2
1tζ j

√
(1tζ j )2− 4 for j = 1, 2, . . . , N. (43)

We are now in a position to prove our main result.

THEOREM4.1. A necessary condition for stability of the FDTD method is

1t ≤ 2

ρ(A)
, (44)

while a necessary and sufficient condition is

1t <
2

ρ(A)
. (45)
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Proof. We prove the necessary condition first. If the FDTD scheme is stable we must
haveρ(G) ≤ 1. From Eq. (43) it then follow that

1t ≤ 2

ρ(A)
. (46)

The proof of the sufficiency condition is more involved. If the condition of Eq. (45) is
satisfied, all submatricesBj can be diagonalized. In other words, there exist nonsingular
matricesVj such that

Bj = Vj6 j V
−1
j , for j = 1, 2, . . . , N, (47)

where6 j is a 2-by-2 diagonal matrix with the eigenvalues of matrixBj on its diagonal.
From Eq. (43) it follows that all eigenvalues of matrixG (and hence ofB) are locatedon
the unit circle in the complex plane if the condition of Eq. (45) is satisfied.

We have

‖F(tn+m)‖2 = ‖GmF(tn)‖2 ≤ ‖Gm‖2‖F(tn)‖2, (48)

and stability is proven by showing that‖Gm‖2 remains bounded for anym≥ 1.
Now it is easily verified that

‖Gm‖2 = ‖Bm‖2 = max
j=1,2,...,N

∥∥Bm
j

∥∥
2. (49)

Say that it is theJth submatrix for which the maximum is attained. Then,

‖Gm‖2 =
∥∥Bm

J

∥∥
2 ≤ ‖VJ‖2

∥∥6m
J

∥∥
2

∥∥V−1
J

∥∥
2 = ‖VJ‖2

∥∥V−1
J

∥∥
2 = K . (50)

Equality in Eq. (46) is not a sufficient condition for stability. To show this, we construct
a vectorx for which ‖Gmx‖2 becomes unbounded asm→∞, if 1t is chosen such that
1tρ(A) = 2. We have

‖Gmx‖22 = ‖U BmU H x‖22 = ‖BmU H x‖22. (51)

Now choosex asx = U p, and partition vectorp asp = [ pT
1 , pT

2 , . . . , pT
N ]T , where thepj

are 2-by-1 vectors. We then have

‖Gmx‖22 =
N∑

j=1

∥∥Bm
j pj

∥∥2
2. (52)

Since1tρ(A) = 2, there are at least two submatrices equal to

B̃ =
( −3 −2i
−2i 1

)
. (53)

Matrix B̃ cannot be diagonalized. Instead, we compute its Schur decomposition

B̃ = W T WH , (54)
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where

W = 1

2

√
2

(
1 i
i 1

)
and T =

(−1 −4i
0 −1

)
. (55)

Notice that matrixW is unitary and that the eigenvalues ofB̃ are located on the diagonal
of matrix T . From the expression for matrixT in Eq. (55) it follows that

Tm = (−1)m
(

1 4mi
0 1

)
. (56)

Let the Rth submatrix be equal tõB. Choose vectorp such thatpj = [0 0]T for j 6= R,
and pR = W[0 1]. With x = U p and this particular vectorp, we obtain

‖Gmx‖22 =
∥∥Bm

R pR

∥∥2
2 = ‖W TmWH pR‖22

=
∥∥∥∥Tm

[
0
1

] ∥∥∥∥2

2

= 16m2+ 1→∞ asm→∞, (57)

showing that there exits a vectorx for which the scheme becomes unstable.j

The spectral radius of matrixA does not change if the mesh size is fixed and stable
results are obtained on any given time interval as long as Eq. (45) is satisfied. However, the
spectral radius increases for a finer mesh. Equation (45) tells us that a smaller time step is
then necessary to obtain stable results.

As an interesting by-product, we show the 2-norm of the FDTD iteration matrix. Direct
computation yields

‖G‖2 =
√

2+ s2(s2+√4+ s4)

2
, (58)

wheres= 1tρ(A). This results shows that the 2-norm of the FDTD matrix is greater than
one for any (positive) value ofs. Fors= 1 (1t equals half the upper limit of Eq. (45)) we
have

‖G‖2 = 1+√5

2
, (59)

the golden ratio.

5. THE STABILITY CONDITION IN PRACTICE

The problem with the condition of Eq. (45) is that the spectral radius of matrixA is usually
not available. In contrast, the infinity norm of this matrix is easily computed. Approximating
the spectral radius by the infinity norm leads to the practical stability condition

1t <
2

‖A‖∞ . (60)

If the above inequality is satisfied, then the stability condition of Eq. (45) is automatically
satisfied sinceρ(A) ≤ ‖A‖∞.
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As an illustration, consider a homogeneous medium characterized by a constant relative
permittivity εr and a constant relative permeabilityµr. Using the definition of matrixA (see
Eq. (30)), we obtain

‖A‖∞ = max
i=1,2,...,N

N∑
j=1

|ai, j |

=


2√
εrµr1

, for one dimensional problems,

4√
εrµr1

, for two- and three-dimensional problems.
(61)

Substituting this result in Eq. (60) then leads to the stability condition

1t < f · √εrµr1, (62)

where f = 1 for one-dimensional problems, andf = 1/2 for two- and three-dimensional
problems. Rewriting the above equation in terms of the unnormalized quantities gives

1t < f
1

c
, (63)

wherec is the electromagnetic wave speed.

6. A ONE-DIMENSIONAL CONFIGURATION

Consider the electromagnetic field in a configuration that is invariant in thex1 andx2

directions and let the normalized field quantities satisfy the equations

∂3H2+ εr∂t E1 = −Je
1 (64)

and

∂3E1+ µr∂t H2 = −K e
2, (65)

with 0< x3 < 1. The system is initially at rest. The boundary conditions are given by

E1(0, t) = E1(1, t) = 0, for t > 0. (66)

Define the grid pointsx3;i = (i − 1)1 for i = 1, 2, . . . , Ns with 1 = 1/(Ns− 1), and
approximate the electromagnetic field quantities on a staggered grid (see Fig. 1). We then
obtain the equations

H2
(
x3;i+1/2, t

)− H2
(
x3;i−1/2, t

)
1

+ εr(x3;i )∂t E1(x3;i , t) = −Je
1(x3;i , t), (67)

for i = 2, 3, . . . , Ns− 1, and

E1(x3;i+1, t)− E1(x3;i , t)
1

+ µr
(
x3;i+1/2

)
∂t H2

(
x3;i+1/2, t

) = −K e
2

(
x3;i+1/2, t

)
, (68)
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FIG. 1. A one-dimensional configuration. The squares indicate the location of the electric field strength
componentE1, the circles indicate the location of the magnetic field strength componentH2.

for i = 1, 2, . . . , Ns− 1. The boundary conditions become

E1(x3;1, t) = E1
(
x3;Ns, t

) = 0, for t > 0. (69)

Equations (67)–(69) can be written more compactly as

(D + M∂t )F(t) = Q(t), (70)

in which the field vectorF = F(t) is given by

F(t) = [H2
(
x3;3/2, t

)
, E1(x3;2, t), H2

(
x3;5/2, t

)
, . . . , E1

(
x3;Ns−1, t

)
, H2

(
x3;Ns−1/2, t

)]T
,

(71)

and the source vector has a similar partitioning. The medium matrixM is of the form

M = diag
(
µr
(
x3;3/2

)
, εr(x3;2), µr

(
x3;5/2

)
, . . . , εr

(
x3;Ns−1

)
, µr
(
x3;Ns−1/2

))
, (72)

and matrixD is given by

D = tridiag

(
− 1

1
, 0,

1

1

)
. (73)

To simplify the analysis, we consider a homogeneous medium characterized by a constant
relative permittivityεr and a constant relative permeabilityµr. As is easily verified, matrix
A, as defined in Eq. (30), is then given by

A = tridiag

(
− 1√

εrµr1
, 0,

1√
εrµr1

)
. (74)

For this particular example the spectral radius of matrixA is known. We have

ρ(A) = 2√
εrµr1

cos

(
π1

2

)
. (75)

Substitution of this result in Eq. (45) leads to the stability condition

1t <
√
εrµr1

cos
(
π1
2

) . (76)
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If we rewrite this inequality in terms of the unnormalized quantities, we obtain the bound

1t <
1

ccos
(
π1
2L

) . (77)

In Figs. 2a–2c we have plotted the eigenvalues of the FDTD iteration matrix for a fixed
Ns and three different values of1t , namely, 1t = 5/(2ρ(A)),1t = 2/ρ(A), and

FIG. 2. (a) Eigenvalues of the FDTD iteration matrixG for 1t = 5/(2ρ(A)). (b) Eigenvalues of the FDTD
iteration matrixG for 1t = 2/ρ(A). (c) Eigenvalues of the FDTD iteration matrixG for 1t = 3/(2ρ(A)).
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1t = 3/(2ρ(A)). Notice that the eigenvalues approach one and remain on the unit cir-
cle as1t becomes smaller. This can also be seen from Eq. (43), of course.

7. CONCLUSIONS

In this paper we have presented a necessary and sufficient condition for stability of the
FDTD method. Furthermore, we have shown that for a particular time step the 2-norm
of the FDTD iteration matrix is equal to the golden ratio. In our analysis we considered
inhomogeneous, isotropic, and lossless media. Future work will focus on the incorporation
of lossy media. Finally, we mention that the stability analysis presented in this paper can
also be used to study the stability of FDTD schemes for acoustic and elastodynamic wave
fields, since it can be shown that the governing equations for these types of waves can be
written in the form of Eq. (8) as well (see De Hoop and De Hoop [1]).
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